The difference among recv/recvfrom/recvmsg

recv/recvfrom/recvmsg系统调用 

功能描述: 
从套接字上接收一个消息。对于recvfrom recvmsg,可同时应用于面向连接的和无连接的套接字。recv一般只用在面向连接的套接字,几乎等同于recvfrom,只要将recvfrom的第五个参数设置NULL

如果消息太大,无法完整存放在所提供的缓冲区,根据不同的套接字,多余的字节会丢弃。

假如套接字上没有消息可以读取,除了套接字已被设置为非阻塞模式,否则接收调用会等待消息的到来。


用法: 
#include <sys/types.h>
#include <sys/socket.h>

ssize_t recv(int sock, void *buf, size_t len, int flags);

ssize_t recvfrom(int sock, void *buf, size_t len, int flags,
     struct sockaddr *from, socklen_t *fromlen);

ssize_t recvmsg(int sock, struct msghdr *msg, int flags);

参数:  
sock
:索引将要从其接收数据的套接字。

buf
:存放消息接收后的缓冲区。
len
buf所指缓冲区的容量。
flags
:是以下一个或者多个标志的组合体,可通过or
操作连在一起

MSG_DONTWAIT:操作不会被阻塞。
MSG_ERRQUEUE
指示应该从套接字的错误队列上接收错误值,依据不同的协议,错误值以某种辅佐性消息的方式传递进来, 使用者应该提供足够大的缓冲区。导致错误的原封包通过msg_iovec作为一般的数据来传递。导致错误的数据报原目标地址作为msg_name被提供。 错误以sock_extended_err
结构形态被使用,定义如下

#define SO_EE_ORIGIN_NONE    0
#define SO_EE_ORIGIN_LOCAL   1
#define SO_EE_ORIGIN_ICMP    2
#define SO_EE_ORIGIN_ICMP6   3

struct sock_extended_err
{
    u_int32_t ee_errno;   /* error number */
    u_int8_t ee_origin; /* where the error originated */
    u_int8_t ee_type;    /* type */
    u_int8_t ee_code;    /* code */
    u_int8_t ee_pad;
    u_int32_t ee_info;    /* additional information */
    u_int32_t ee_data;    /* other data */
    /* More data may follow */
};

MSG_PEEK:指示数据接收后,在接收队列中保留原数据,不将其删除,随后的读操作还可以接收相同的数据。
MSG_TRUNC
:返回封包的实际长度,即使它比所提供的缓冲区更长, 只对packet套接字有效。 
MSG_WAITALL
:要求阻塞操作,直到请求得到完整的满足。然而,如果捕捉到信号,错误或者连接断开发生,或者下次被接收的数据类型不同,仍会返回少于请求量的数据。

MSG_EOR
:指示记录的结束,返回的数据完成一个记录。
MSG_TRUNC
:指明数据报尾部数据已被丢弃,因为它比所提供的缓冲区需要更多的空间。
MSG_CTRUNC
:指明由于缓冲区空间不足,一些控制数据已被丢弃。
MSG_OOB
:指示接收到out-of-band数据(即需要优先处理的数据)
MSG_ERRQUEUE
:指示除了来自套接字错误队列的错误外,没有接收到其它数据。

from:指向存放对端地址的区域,如果为NULL,不储存对端地址。
fromlen
:作为入口参数,指向存放表示from最大容量的内存单元。作为出口参数,指向存放表示from实际长度的内存单元。
msg
:指向存放进入消息头的内存缓冲,结构形态如下

struct msghdr {
    void         *msg_name;       /* optional address */
    socklen_t     msg_namelen;    /* size of address */
    struct iovec *msg_iov;        /* scatter/gather array */
    size_t        msg_iovlen;     /* # elements in msg_iov */
    void         *msg_control;    /* ancillary data, see below */
    socklen_t     msg_controllen; /* ancillary data buffer len */
    int           msg_flags;      /* flags on received message */
};


可能用到的数据结构有

struct cmsghdr {
    socklen_t cmsg_len;     /* data byte count, including hdr */
    int       cmsg_level;   /* originating protocol */
    int       cmsg_type;    /* protocol-specific type */
    /* followed by
    u_char    cmsg_data[]; */
};


返回说明:  
成功执行时,返回接收到的字节数。另一端已关闭则返回0。失败返回-1errno被设为以下的某个值
  
EAGAIN
:套接字已标记为非阻塞,而接收操作被阻塞或者接收超时

EBADF
sock不是有效的描述词
ECONNREFUSE
:远程主机阻绝网络连接
EFAULT
:内存空间访问出错
EINTR
:操作被信号中断
EINVAL
:参数无效
ENOMEM
:内存不足
ENOTCONN
:与面向连接关联的套接字尚未被连接上
ENOTSOCK
sock
索引的不是套接字

 

The TCP network programming based on Linux

基于LinuxTCP网络编程

.LinuxTCP编程框架

clip_image001

TCP网络编程的流程包含服务器和客户端两种模式。服务器模式创建一个服务程序,等待客户端用户的连接,接收到用户的连接请求后,根据用户的请求进行处理;客户端模式则根据目的服务器的地址和端口进行连接,向服务器发送请求并对服务器的响应进行数据处理。

1.服务器端程序包括

Ø  Ø  建立套接字( socket()

Ø  Ø  套接字与端口的绑定(bind())

Ø  Ø  设置服务器的侦听连接(listen()

Ø  Ø  接收客户端连接(accept()

Ø  Ø  接收和发送数据(send(),recv()

Ø  Ø  关闭套接字(close())

2.说明

1>套接字初始化过程中,根据用户对套接字的需求来确定套接字的选项。按照用户定义的网络类型,协议类型和具体的协议标号等参数来定以socket()函数。系统根据用户的需求生成一个套接字文件描述符供用户使用。

2>套接字与端口的绑定过程中,将套接字与一个地址结构进行绑定。绑定之后,套接字所代表IP地址和端口地址及协议类型等参数按照绑定值进行操作。

3>由于一个服务器需要满足多个客户端的连接请求,而服务器在某个时间仅能处理有限个数的客户端连接请求,所以服务器需要设置服务器端排队队列的长度。

4>在客户端发送连接请求之后,服务器需要接收客户端的连接,然后才能进行其他的处理。

5>在服务器接收客户端请求之后,可以从套接字文件描述符中读取数据或者向文件描述符发送数据。接收数据后服务器按照定义的规则对数据进行处理,并将结果发送给客户端。

6>当服务器处理完数据,要结束与客户端的通信过程的时候,需要关闭套接字连接

2.客户端程序包括

Ø  Ø  建立套接字(socket())

Ø  Ø  连接服务器(connect())

Ø  Ø  读写网络数据(send(),recv())

Ø  Ø  关闭套接字(close())

3.服务器端和客户端程序的区别

客户端程序和服务器端程序不同之处是客户端在建立套接字之后可以不进行地址绑定,而是直接连接服务器端。

服务器端有listen()accept()两个函数,而客户端不需要这两个函数。

.基于LinuxTCP套接字函数

1. socket

1> 函数原型:

int socket(int domain,int type,int protocol)

2> 函数功能:

函数socket()用于创建一个套接字描述符。

3> 形参:

Ø  domain:用于指定创建套接字所使用的协议族,在头文件

<linux/socket.h>中定义。有时候程序中会使用PF_INET,在头文件中AF_INETPF_INET的数值是一致的。

常见的协议族如下:

AF_UNIX:创建只在本机内进行通信的套接字。

AF_INET:使用IPv4TCP/IP协议

AF_INET6:使用IPv6 TCP/IP协议

说明:

AF_UNIX只能用于单一的UNIX系统进程间通信,而AF_INET是针对Interne的,因而可以允许在远程主机之间通信。一般把它赋为AF_INET

Ø  type:指明套接子通信的类型,对应的参数如下

SOCK_STREAM:创建TCP流套接字

SOCK_DGRAM:创建UDP数据报套接字

SOCK_RAW:创建原始套接字

Ø  protocol:指定某个协议的特定类型

参数protocol通常设置为0,表示通过参数domain指定的协议族和参数type指定的套接字类型来确定使用的协议。当为原始套接字时,系统无法唯一的确定协议,此时就需要使用使用该参数指定所使用的协议。

4> 返回值:执行成功后返回一个新创建的套接字;若有错误发生则返回一个-1,错误代码存入errno中。

5> 举例:调用socket函数创建一个UDP套接字

int sock_fd;

sock_fd = socket(AF_INET,SOCK_DGRAM,0);

if(sock_fd< 0){

       perror(“socket”);

       exit(1);

}

2. bind

1> 函数原型:

int bind(int sockfd,struct sockaddr *my_addr,socklen_t addrlen)

2> 函数功能

函数bind()的作用是将一个套接字文件描述符与地址和端口绑定。

3> 形参:

Ø  sockfd:sockfd是调用socket函数返回的文件描述符;

Ø  addrlensockaddr结构的长度。

Ø  my_addr: 是一个指向sockaddr结构的指针,它保存着本地套接字的地址(即端口和IP地址)信息。不过由于系统兼容性的问题,一般不使用这个结构,而使用另外一个结构(structsockaddr_in)来代替

4> 套接字地址结构:

(1)struct sockaddr:

结构struct  sockaddr定义了一种通用的套接字地址,它在

sys/socket.h 中定义。

struct sockaddr{

       unsigned short  sa_family;/*地址类型,AF_XXX*/

       char          sa_data[14];/*14字节的协议地址*/

}

a. sin_family:表示地址类型,对于使用TCP/IP协议进行的网络编程,该值只能是AF_INET.

b. sa_data:存储具体的协议地址。

(2)sockaddr_in

每种协议族都有自己的协议地址格式,TCP/IP协议组的地址格式为结构体struct sockaddr_in,它在netinet/in.h头文件中定义。

structsockaddr_in{

   unsigned short  sin_family;/*地址类型*/

   unsigned short  sin_port;/*端口号*/

   struct in_addr   sin_addr;/*IP地址*/

   unsigned char  sin_zero[8];/*填充字节,一般赋值为0*/

}

a. sin_family:表示地址类型,对于使用TCP/IP协议进行的网络编程,该值只能是AF_INET.

b. sin_port:是端口号

c. sin_addr:用来存储32位的IP地址。

d. 数组sin_zero为填充字段,一般赋值为0.

e. struct in_addr的定义如下:

structin_addr{

                     unsigned long s_addr;

}

结构体sockaddr的长度为16字节,结构体sockaddr_in的长度为16字节。可以将参数my_addrsin_addr设置为INADDR_ANY而不是某个确定的IP地址就可以绑定到任何网络接口。对于只有一IP地址的计算机,INADDR_ANY对应的就是它的IP地址;对于多宿主主机(拥有多个网卡)INADDR_ANY表示本服务器程序将处理来自所有网络接口上相应端口的连接请求

5> 返回值:

函数成功后返回0,当有错误发生时则返回-1,错误代码存入errno中。

6>举例:调用socket函数创建一个UDP套接字

struct sockaddr_in addr_serv,addr_client;/*本地的地址信息*/

memset(&serv_addr,0,sizeof(structsockaddr_in));

addr_serv.sin_family= AF_INET;/*协议族*/

addr_serv.sin_port= htons(SERV_PORT);/*本地端口号*/

addr_serv.sin_addr.s_addr= htonl(INADDR_ANY); /*任意本地地址*/
/*
套接字绑定
*/

if(bind(sock_fd,(structsockaddr *)&addr_serv),sizeof(struct sockaddr_in)) <0)

{

       perror(“bind”);

       exit(1);

}

3. 监听本地端口listen()

1>函数功能:函数listen()用来初始化服务器可连接队列,服务器处理客户端连接请求的时候是顺序处理的,同一时间仅能处理一个客户端连接。当多个客户端的连接请求同时到来的时候,服务器并不是同时处理,而是将不能处理的客户端连接请求放到等待队列中,这个队列的长度由listen()函数来定义。

2>函数原型:

#includ<sys/socket.h>

int listen(int sockfd,int backlog);

3>形参

Ø  sockfd: sockfd是调用socket函数返回的文件描述符

Ø  backlog:指定该连接队列的最大长度。如果连接队列已经达到最大,之后的连接请求被服务器拒绝。大多数系统的设置为20,可以将其设置修改为5或者10,根据系统可承受负载或者应用程序的需求来确定。

4>返回值:当listen()函数成功运行时,返回值为0;当运行失败时,它的返回值为-1,错误代码存入errno中。

5>.listen()函数的例子:

#define SERV_PORT 3000

int main(int argc,char *argv[])

{

int sock_fd;

struct sockaddr_in addr_serv,addr_client;/*本地的地址信息*/

sock_fd = socket(AF_INET,SOCK_DGRAM,0);

if(sock_fd< 0){

       perror(“socket”);

       exit(1);

}

memset(&serv_addr,0,sizeof(structsockaddr_in));

addr_serv.sin_family= AF_INET;/*协议族*/

addr_serv.sin_port= htons(SERV_PORT);/*本地端口号*/

addr_serv.sin_addr.s_addr= htonl(INADDR_ANY); /*任意本地地址*/
/*
套接字绑定
*/

if(bind(sock_fd,(structsockaddr *)&addr_serv),sizeof(struct sockaddr_in)) <0)

{

       perror(“bind”);

       exit(1);

}

//设置服务器侦听队列的长度

if(listen(sock_fd,5) <0){

       perror(“listen”);

       exit(1);

}

4. accept(接收一个网络请求)

1>函数功能:

当一个客户端的连接请求到达服务器主机侦听的端口时,此时客户端的连接会在队列中等待,知道使用服务器处理接收请求。

函数accept()成功执行后,会返回一个新的套接口文件描述符来表示客户端的连接,客户端连接的信息可以通过这个新描述符来获得。因此当服务器成功处理客户端的请求连接后,会有两个文件描述符,老的文件描述符表示客户端的连接,函数send()recv()通过新的文件描述符进行数据收发。

2>函数原型:

#include<sys/types.h>

#include<sys/socket.h>

int accept(int sock_fd,struct sockaddr*addr,socklen_t *addrlen);

3>形参

Ø  sock_fd:是由函数socket创建,经函数bind绑定到本地某一端口上,然后通过函数listen转化而来的监听套接字。

Ø  addr:用来保存发起连接请求的主机的地址和端口。

Ø  addrlenaddr 所指向的结构体的大小。

4>返回值:accept()函数的返回值是新连接的客户端套接字文件描述符,与客户端之间的通信是通过accept()返回的新套接字文件描述符来进行的,而不是通过建立套接字时的文件描述符。如果accept()函数发生错误,accept()会返回-1,通过errno可以得到错误值。

5>如果参数sock_fd所指定的套接字被设置为阻塞方式(Linux下的默认方式),且连接请求队列为空,则accept()将被阻塞直到有连接请求到此为止;如果参数s所指定的套接字被设置为非阻塞方式,如果队列为空,accept将立即返回-1errno被设置为EAGAIN.

6>实例:

int client_fd;

int client_len;

struct sockaddr_in  client_addr;

client_len = sizeof(struct sockaddr_in);

client_fd = accept(sock_fd,(struct sockaddr *)&client_addr,&client_len);

if(conn_fd< 0){

       perror(“accept”);

exit(1);

}

5. connect(连接目标网络服务器)

1>函数功能:

客户端在建立套接字之后,不需要进行地址绑定,就可以直接连接服务器。连接服务器的函数为connect(),此函数连接指定参数的服务器,例如IP地址,端口号。

如果是TCP编程,则connect()函数用于服务器发出连接请求,服务器的IP地址和端口号由 参数serv_addr指定。

如果是UDP编程,则connect函数并不建立真正的连接,它只是告诉内核与该套接字进行通信的目的地址(由第二个参数指定),只有该目的地址发来的数据才会被该socket接收。调用connect函数的好处是不必在每次发送和接收数据时都指定目的地址。

2>函数原型:

#include<sys/types.h>

#include<sys/socket.h>

int connect(int sock_fd,struct sockaddr  *serv_addr,socklen_taddrlen);

3>形参:

Ø  sock_fd:建立套接字时返回的套接字文件描述符,调用socket()返回的。

Ø  serv_addr:是一个指向数据结构sockaddr的指针,其中包括客户端需要连接的服务器的目的IP地址和端口号。

Ø  addrlen:表示了第二了参数的大小,可以使用sizeof(struct sockaddr)

4>执行成功后返回0,有错误发生则返回-1,错误代码存入errno中。

5>实例:

int sock_fd;

struct sockaddr_in serv_addr;
if(-1 == (sock_fd == socket(AF_INET,SOCK_STREAM,0))){

              printf(“Error: Unable to createsocket(%i)…\n”,errno);

              perror(“sockets”);

              exit(1);

}

memset(&serv_addr,0,sizeof(structsockaddr_in));

serv_addr.sin_family= AF_INET;

serv_addr.sin_port= htons(DEST_PORT);

serv_addr.sin_addr.s_addr= inet(DEST_IP_ADDRESS);

if(-1== connect(sock_fd,(struct sockaddr *)&serv_add,sizeof(struct sockaddr))){

       printf(“Error:unable to the establishconnection to socket(%i)…\n”,errno);

       perror(“socks”);

       close(sock_fd);

       exit(1);

}

6. send(发送数据)

1>函数功能:函数send用来在TCP套接字上发送数据,send只能对处于连接状态的套接字使用。

2>函数原型

#include<sys/types.h>

#include<sys/socket.h>

ssize_t send(int conn_fd,const void *msg,size_t len, int flags);

3>函数形参:

Ø  conn_fd:为已建立好连接的套接字描述符,即调用accept()函数后返回的套接字描述符。

Ø  msg:存放发送数据的缓冲区。

Ø  len:发送缓冲区的长度

Ø  flags:为控制选项,一般设置为0,或取以下值:

²  MSG_OOB:在指定的套接字上发送带外数据(out-of-band data,该类型的套接字必须支持带外数据(如:SOCK_STREAM.

²  MSG_DONTROUTE:通过最直接的路径发送数据,而忽略下层协议的路由设置。

4>返回值:

执行成功返回实际发送数据的字节数,出错则返回-1,错误代码存入errno中。

执行成功只是说明数据写入套接字的缓冲区中,并不表示数据已经成功地通过网络发送到目的地。

5>实例:

#define  BUFFERSIZE  1500

char  send_buf[BUFFERSIZE];

……

if(send(conn_fd,send_buf,len,0)< 0){

       perror(“send”);

exit(1);

}

7. recv(接收数据)

1>函数功能:recv()用来TCP套接字上接收数据。函数recv从指定的套接字描述符上接收数据并保存到指定buf中。

2>函数原型

#include<sys/types.h>

#include<sys/socket.h>

ssize_t recv(int conn_fd,void *buf,size_t len,int flags);

3>函数形参:

Ø  conn_fd: 为已建立好连接的套接字描述符,即调用accept()函数后返回的套接字描述符

Ø  buf:接收缓冲区

Ø  len:接收缓冲区的大小

Ø  flags:为控制选项,一般设置为0或取以下数值

²  MSG_OOB:请求接收带外数据

²  MSG_PEEK:只查看数据而不读出

²  MSG_WAITALL:只在接收缓冲区满时才返回。

4>函数返回值

函数执行成功返回接收到的数据字节数,出错返回-1,错误代码存入errno中。

5>实例:

#define  BUFFERSIZE  1500

char recv_buf[BUFFERSIZE];

……

if(recv(conn_fd,recv_buf,sizeof(recv_buf),0)< 0){

       perror(“recv”);

exit(1);

}

8. close

1>函数原型:

int  close(int fd);

2>函数功能:

函数close用来关闭一个套接字描述符。

3>函数形参:

Ø  参数fd为一个套接字描述符。

4>返回值:

执行成功返回0,出错则返回-1.错误代码存入errno中。

说明:close()函数的头文件是#include<unistd.h>.

.基于LinuxTCP套接字编程实例

1.实例程序分为服务器端和客户端,客户端把Hello tigerjibo发送给服务器端;服务器端接收到字符串后,发送接收到的总字符串个数给客户端;

clip_image002

2.服务器端程序:

clip_image003

clip_image004

  1 #include<stdio.h>
  2 #include<stdlib.h>
  3 #include<string.h>
  4 #include<errno.h>
  5
  6
  7 #include<sys/types.h>
  8 #include<sys/socket.h>
  9 #include<unistd.h>//close()
10 #include<netinet/in.h>//struct sockaddr_in
11 #include<arpa/inet.h>//inet_ntoa
12 #define  QUEUE_LINE  12
13 #define  SOURCE_PORT 8000
14
15 #define  SOURCE_IP_ADDRESS “192.168.1.6”
16
17 void process_info(int s)
18 {
19         int recv_num;
20         int send_num;
21         char recv_buf[50];
22         char send_buf[50];
23         while(1){
24                 printf(“begin recv:\n”);
25                 recv_num = recv(s,recv_buf,sizeof(recv_buf),0);
26                 if(recv_num <0){
27                         perror(“recv”);
28                         exit(1);
29                 } else {
30                         recv_buf[recv_num] = ‘\0’;
31                         printf(“recv sucessful:%s\n”,recv_buf);
32                 }
33                 sprintf(send_buf,”recv %d numbers bytes\n”,recv_num);
34                 printf(“begin send\n”);
35                 send_num = send(s,send_buf,sizeof(send_buf),0);
36                 if (send_num < 0){
37                         perror(“sned”);
38                         exit(1);
39                 } else {

40                         printf(“send sucess\n”);
41                 }
42         }
43 }
44 int main()
45 {
46         int sock_fd,conn_fd;
47         int client_len;
48         pid_t pid;
49         struct sockaddr_in addr_serv,addr_client;
50         sock_fd = socket(AF_INET,SOCK_STREAM,0);
51         if(sock_fd < 0){
52                 perror(“socket”);
53                 exit(1);
54         } else {
55                 printf(“sock sucessful\n”);
56         }
57         //
初始化服务器端地址

58         memset(&addr_serv,0,sizeof(addr_serv));
59         addr_serv.sin_family = AF_INET;
60         addr_serv.sin_port = htons(SOURCE_PORT);
61         addr_serv.sin_addr.s_addr =inet_addr(SOURCE_IP_ADDRESS);
62         client_len = sizeof(struct sockaddr_in);
63         if(bind(sock_fd,(struct sockaddr *)&addr_serv,sizeof(struct sockaddr_in))<0){
64                 perror(“bind”);
65                 exit(1);
66         } else {
67                 printf(“bind sucess\n”);
68         }
69         if (listen(sock_fd,QUEUE_LINE) < 0){
70                 perror(“listen”);
71                 exit(1);
72         } else {
73                 printf(“listen sucessful\n”);
74         }
75         while(1){
76                  printf(“begin accept:\n”);
77                  conn_fd = accept(sock_fd,(struct sockaddr *)&addr_client,&client_len);

78                  if(conn_fd < 0){
79                         perror(“accept”);
80                         exit(1);
81                  }
82                  printf(“accept a new client,ip:%s\n”,inet_ntoa(addr_client.sin_addr));
83                  pid = fork();
84                  if(0 == pid){         //
子进程
85                         close(sock_fd);//
在子进程中关闭服务器的侦听
86                         process_info(conn_fd);//
处理信息
87                  } else {
88                         close(conn_fd);//
在父进程中关闭客户端的连接

89                  }
90         }
91
92 }

3.客户端程序:

clip_image005

clip_image006

  1 #include<stdio.h>
  2 #include<string.h>
  3 #include<stdlib.h>
  4 #include<errno.h>
  5
  6 #include<sys/types.h>
  7 #include<sys/socket.h>
  8 #include<unistd.h>//close()
  9 #include<netinet/in.h>//struct sockaddr_in
10 #include<arpa/inet.h>//inet_ntoa
11
12 #define DEST_PORT 8000
13 #define DEST_IP_ADDRESS “192.168.1.6”
14
15 /*
客户端的处理过程
*/
16 void process_info(int s)
17 {
18         int send_num;
19         int recv_num;
20         char send_buf[]=”tigerjibo”;
21         char recv_buf[50];
22         while(1){
23                 printf(“begin send\n”);
24                 send_num = send(s,send_buf,sizeof(send_buf),0);
25                 if (send_num < 0){
26                         perror(“send”);
27                         exit(1);
28                 } else {
29                         printf(“send sucess:%s\n”,send_buf);
30                 }
31                 printf(“begin recv:\n”);
32                 recv_num = recv(s,recv_buf,sizeof(recv_buf),0);
33                 if(recv_num < 0){
34                         perror(“recv”);
35                         exit(1);
36                 } else {
37                         recv_buf[recv_num]=’\0′;
38                         printf(“recv sucess:%s\n”,recv_buf);
39                 }

40         }
41 }
42 int main(int argc,char *argv[])
43 {
44         int sock_fd;
45         struct sockaddr_in addr_serv;//
服务器端地址

46
47         sock_fd = socket(AF_INET,SOCK_STREAM,0);
48         if(sock_fd < 0){
49                 perror(“sock”);
50                 exit(1);
51         } else {
52                 printf(“sock sucessful:\n”);
53         }
54         memset(&addr_serv,0,sizeof(addr_serv));
55         addr_serv.sin_family = AF_INET;
56         addr_serv.sin_port =  htons(DEST_PORT);
57         addr_serv.sin_addr.s_addr = inet_addr(DEST_IP_ADDRESS);
58        if( connect(sock_fd,(struct sockaddr *)&addr_serv,sizeof(struct sockaddr)) < 0){
59                 perror(“connect”);
60                 printf(“connect (%d)\n”,errno);
61                 exit(1);
62        } else {
63                 printf(“connect sucessful\n”);
64        }
65         process_info(sock_fd);
66         close(sock_fd);
67 }